Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model.
نویسندگان
چکیده
Dimerization of HIV-I protease (HIV PR) monomers is an essential prerequisite for viral proteolytic activity and the subsequent generation of infectious virus particles. Disrupting dimerization of the enzyme can inhibit its activity. We have calculated the relative binding free energies between different dimers of the HIV protease using molecular dynamics and a continuum model, which we call MM/PBSA. We examined the dominant negative inhibition of the HIV PR by a mutated form of the protease and found relative dimerization free energies of homo- and hetero-dimerization consistent with experimental data. We also developed a rapid screening method, which was called the virtual mutagenesis method to consider other mutations which might stabilize non-wild-type heterodimers. Using this approach, we considered the mutations near the dimer interface which might cause dominant negative inhibition of the HIV PR. The rapid method we developed can be used in studying any ligand-protein and protein-protein interaction, in order to identify mutations that can enhance the binding affinities of the complex.
منابع مشابه
Investigation of Different Solvents and Temperatures Effects on (3,7) Single-Walled Carbon Nanotubes: DFT Study
In this research, we have studied the structural propenies of water. methanol and ethanol surrounding snidewalledcarbon nanotube (SWCNT) and mixed of them either and we have investigated the solvent effects onthe relative energies and dipole moment values by ming molecular dynamics simulation. We used differentforce field it, deterrnaned energy and other type of geometrical parameters, on the p...
متن کاملA Theoretical Study of the Stability and Dielectric Constants of Molybdate-Phosphonic Acid Complex
In this work, we investigated the stability of Molybdate-Phosphonic Acid (MPA) complex by density functionaltheory (DFT) computations in six solvents with the dielectric constant ranging from 1.92 to 10.36. The methodsare used for calculations are B3LYP and B3PW9 I that have been studied in two series of basis sets: D95nand6-31+G (d,p) for hydrogen and oxygen atoms; LANL2DZ for Mo and Phosphoru...
متن کاملg_mmpbsa - A GROMACS Tool for High-Throughput MM-PBSA Calculations
Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA), a method to estimate interaction free energies, has been increasingly used in the study of biomolecular interactions. Recently, this method has also been applied as a scoring function in computational drug design. Here a new tool g_mmpbsa, which implements the MM-PBSA approach using subroutines written in-house or sourced from the GR...
متن کاملMolecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)
Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...
متن کاملThermodynamic stability of hydrogen-bonded systems in polar and nonpolar environments
The thermodynamic properties of a selected set of benchmark hydrogen-bonded systems (acetic acid dimer and the complexes of acetic acid with acetamide and methanol) was studied with the goal of obtaining detailed information on solvent effects on the hydrogen-bonded interactions using water, chloroform, and n-heptane as representatives for a wide range in the dielectric constant. Solvent effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 303 4 شماره
صفحات -
تاریخ انتشار 2000